

RAW MATERIALS - FIT FOR CIRCULAR ECONOMY

Anna RODEWALD & Benjamin MARIAS November 2015

- Who are you?
- Who are we?
- Key definitions
- Raw materials: a deeper look into materials that are fit for circular economy - opportunities & limitations
- Examples of applications

OUR PURPOSE

We started our journey on circular economy with a first Workshop at OutDoor in Friedrichshafen 07/2015

For Performance Days 11/2015:

- ...we are focussing on the Raw Material part of Circular Economy
- ... we would like to inspire you to take over the mindset of Circular Design
- ... we will present some examples of Raw Materials which are fit for Circular Economy
- ... we would like to hear your challenges and ideas on integration of Circular Economy into your Business
- ... build connection between potential partners

WHO ARE YOU?

Who is working on the implementation of circular economy principles?

Why are you coming to this presentation?

WHO ARE WE?

We don't do everything alone. We work with partners in EU.

VISION STATEMENT

MYCELIUM PARTNERS IS THE INDEPENDENT NETWORK OF ENTREPRENEURS WHO WORK AS INTERDISCIPLINARY EXPERTS FOR RESPONSIBLE AND INNOVATIVE BUSINESS SOLUTIONS WITHIN THE EUROPEAN SPORTS- AND TEXTILE-INDUSTRY.

Anna Benjamin

Anna RODEWALD Strategy &

Design

MARIAS
Use and Care
&
End of Use

Cira RIEDEL Consumer Facing & Communication

FUSS
Design
&
Supply Chain

Dominik

ABCD@MYCELIUM-PARTNERS.COM

KEY DEFINITIONS

The circular economy principles*

*Ellen MacArthur Foundation

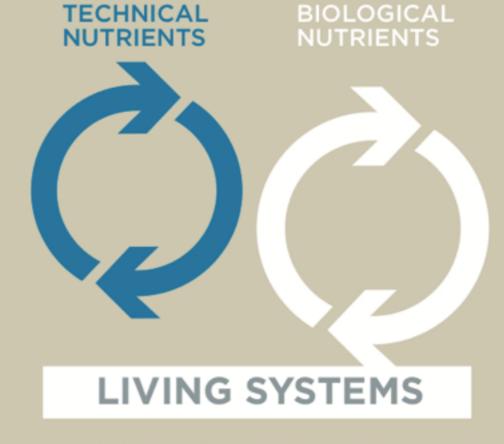
A circular economy is one that is restorative by design, and which aims to keep products, components and materials at their highest utility and value, at all times.

- -> Global economic model
- —> Technical vs biological materials
- -> Effective design and use of materials
- —> New opportunities for innovation
- —> Resilient system Long term

B DEFINITION

LINEAR ECONOMY

TAKE > MAKE > DUMP



WASTE

TECHNICAL & BIOLOGICAL NUTRIENTS MIXED UP

ENERGY FROM FINITE SOURCES

CIRCULAR ECONOMY

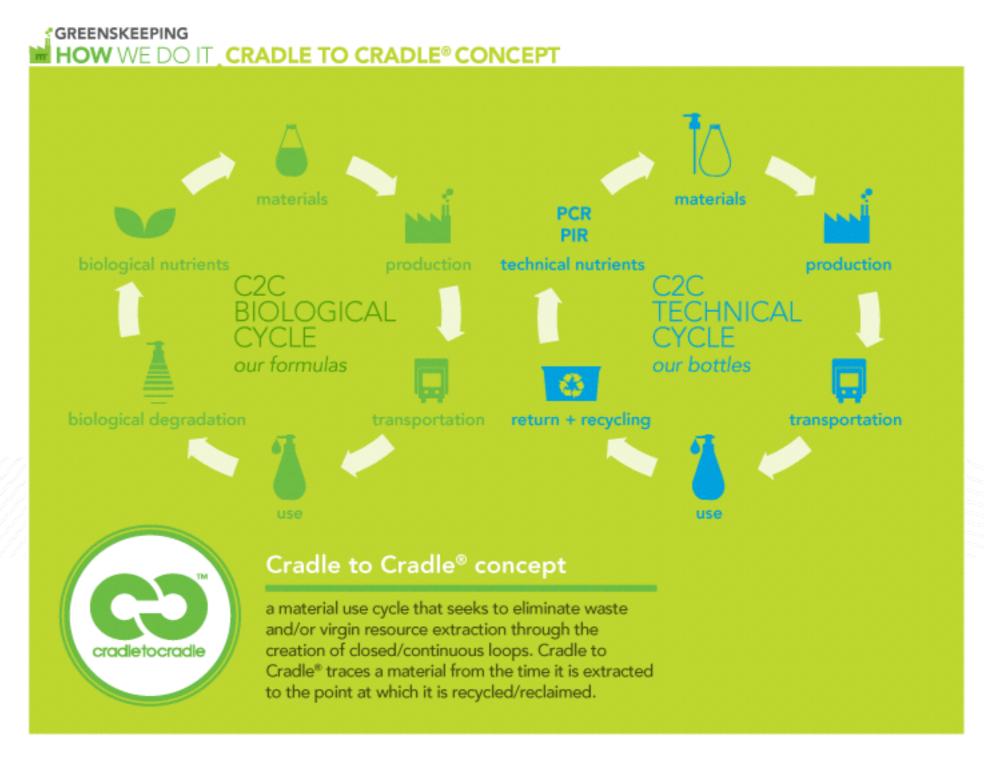
ENERGY FROM RENEWABLE SOURCES

AFTER W McDONOUGH AND M BRAUNGART

Recycle: Open-Loop

Strategy to extend material utilisation for more than one product lifecycle, where the recycled material properties degrade with every recycling loop to finally end up as waste. Open loop recycling can be considered as a **linear process.**

Recycle: Close-Loop


Strategy where the recycled materials keep their original material properties, providing the same material performance through many recycling loops, ideally endlessly.

- -> Material resource efficiency and resource security concerns
- —> Simpler messaging to consumers
- -> Part of a circular economy process

NATURAL FIBERS REGENER
ATED
FIBERS
FROM
NATURAL
SOURCES

VS

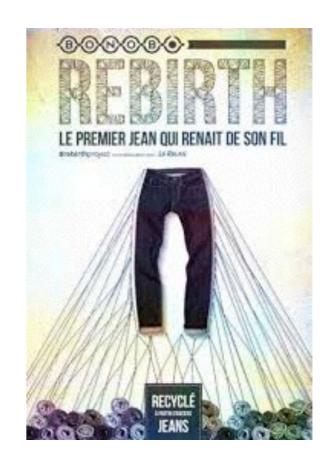
FOSSIL BASED FIBERS

RAW MATERIALS: A DEEPER LOOK INTO MATERIALS THAT ARE FIT FOR CIRCULAR ECONOMY - OPPORTUNITIES AND LIMITATIONS

OPPORTUNITIES	LIMITATIONS
Renewable	Chemicals involve in the cleaning and dying process
Insulation Performance	Traceability of the whole supply chain
Durability	Cost
Recyclability: mechanically & well manage (Italy, France, Spain, UK, etc.)	CO2 footprint higher than down

(CALAMAI

OPPORTUNITIES	LIMITATIONS
Renewable	Water consumption
Comfort & touch	Land use
Easily available	
Fully recyclable : mechanical, easily accessible (Italy, Spain, France, Turkey, etc.)	Lower quality after mechanical recycling



FILATURES DU PARC / HILATURAS FERRE

OPPORTUNITIES	LIMITATIONS
Low water consumption in agriculture	Small number of manufacturers who can deliver good quality
No need for fertilizers	Wrinking if used 100%
High mechanical properties	No « official » recycling process
Good skin comfort, fibre absorbs moisture, "cooling" effect	
Multipurpose use: from apparel to technical equipment	
Compostable (if appropriate dyes)	

FREITAG F-ABRIC

FREITAG®

F-abric is made from a blend of flax and hemp fibers, along with modal fibers made by spinning cellulose obtained from beech trees. F-ABRIC will biodegrade completely within around a couple of months in the compost.

OPPORTUNITIES	LIMITATIONS
Renewable	Materials traceability
Lightweight	Animal welfare
High insulation performance	Price
Fully recyclable: mechanical process, close-loop, accessible	Market availability over the years

NAU + FRENCH SUPPLIER

REGENER ATED FIBERS FROM NATURAL SOURCES

REGENERATED CELLULOSIC

OPPORTUNITIES	LIMITATIONS
All kinds of wood and other cellulosic raw materials can be used	Price
No need for fertilizers	Traceability of the wood
Variety of technical functionality possible	Recyclability not fully commercialized yet
Good skin comfort, fibre absorbs moisture, "cooling" effect	

REGENERATED CELLULOSIC

re:newcell

New ground breaking recycling process of cotton and other cellulosic textiles such as viscose into new textile fibres.

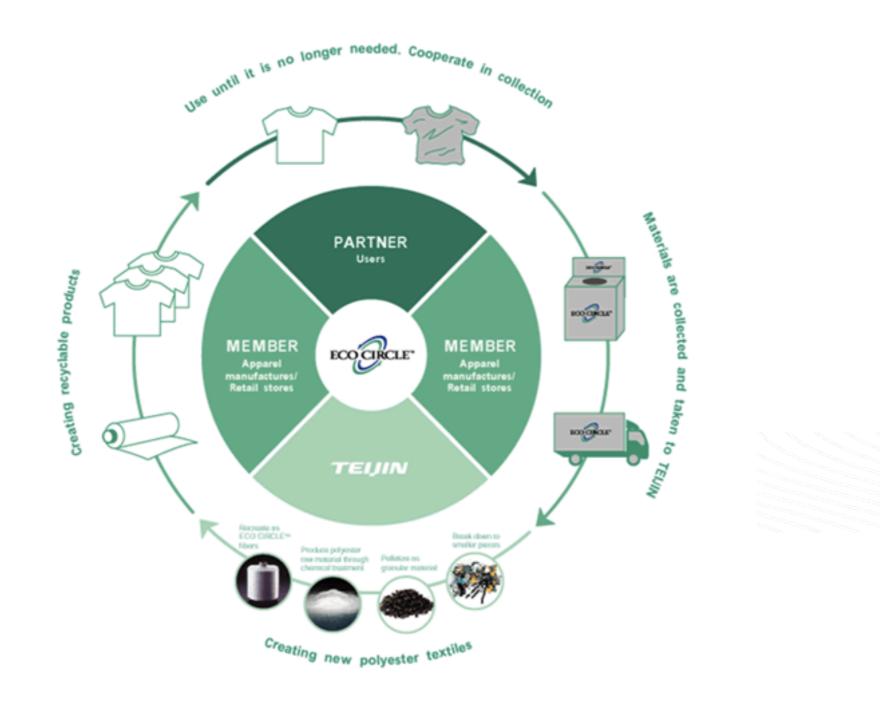
REGENERATED PROTEIN

OPPORTUNITIES	LIMITATIONS
Use of plant based (i.e. soy bean) and animal based (i.e. milk) protein	Price
Biodegradable	In development, not much experience in bulk production yet

REGENERATED PROTEIN

FOSSIL BASED FIBERS

FOSSIL BASED FIBERS

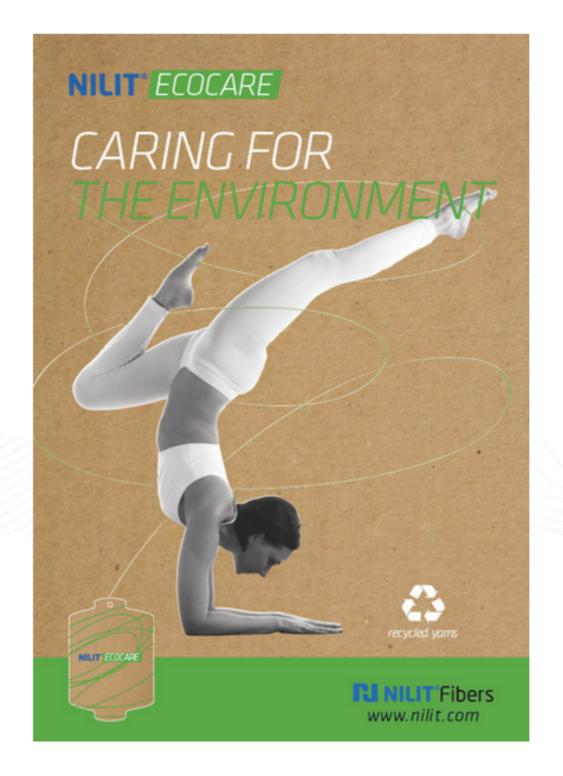

OPPORTUNITIES	LIMITATIONS
Global existing recycling streams	Keep the fibers in a close loop system
Broad availability on fabrics, fillings and accessories	Often need to add virgin materials after recycling process to keep the performance
Commercialized process for chemical and mechanical recycling	Polyester and polyamide are often mixed with other fibers = not recyclable as such or more difficult

POLYESTER - CHEMICAL RECYCLING TEIJING - ECO CIRCLE

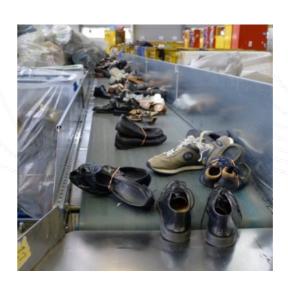
ECO CIRCLE™ is an environmentally friendly system.

POLYESTER - MECHANICAL RECYCLING SINTERMA - NEW LIFE

POLYAMIDE - CHEMICAL RECYCLING AQUAFIL - ECONYL



POLYAMIDE - CHEMICAL RECYCLING NILIT® ECO CARE (PA 6.6)



RECYCLED RUBBER

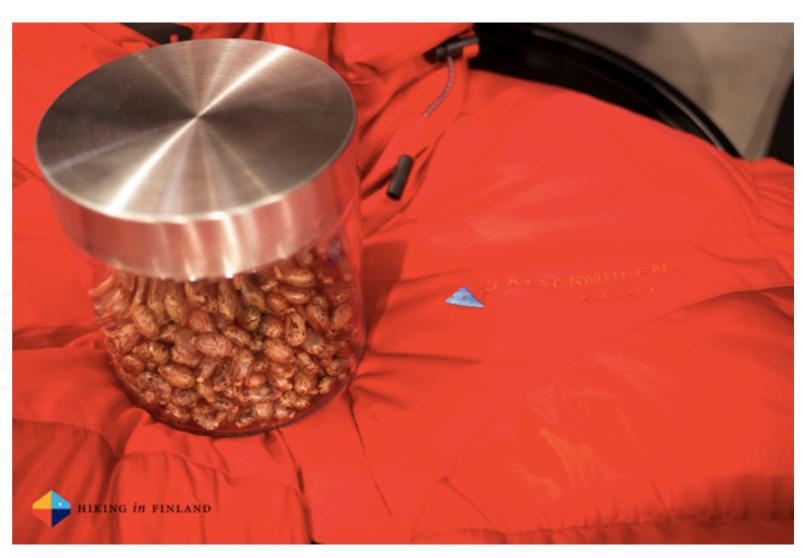
REGENER ATED FIBERS FROM NATURAL SOURCES

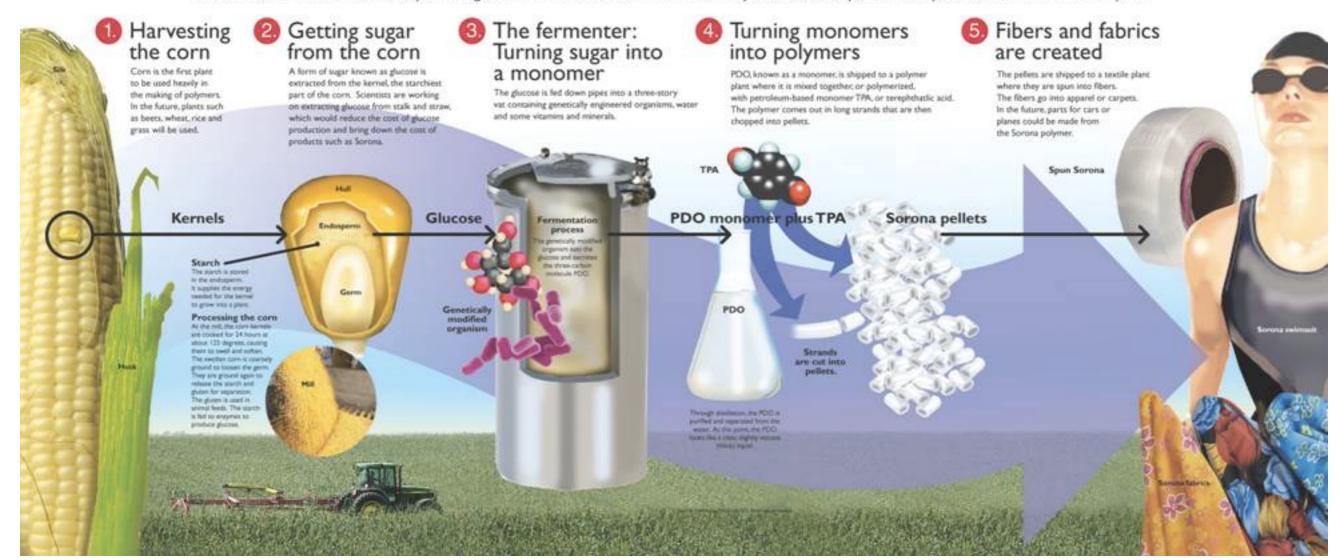
REGENERATED FIBERS FROM NATURAL SOURCES

OPPORTUNITIES	LIMITATIONS
Renewable resources	Potential competition with the food industry
Great substitution of fossil based materials	Not all fully commercialized yet
Less toxic by-products	Often mixed with fossil based fibers (PES, PA)
Potentially biodegradable	Further research needs to be done for appropriate biodegradability

POLYESTER - PLANT-BASED TORAY

TORAY Innovation by Chemistry





SORONA - PLANT-BASED

From corn to polymers and fibers

DuPont" Sorona" is made from naturally occurring starch in the kernels of corn. In the next five years, researchers plan to find ways to use starch from the entire plant.

As a designer:

- Eliminate materials that would disrupt or contaminate the recycling stream (e.g., in-product electronics, high % of elastane, "polyblend", glued in parts)
- Design products that can be easily disassembled into recyclable or reusable material streams
- Design products with a single fiber type to aid in closed-/ open-loop material recycling
- Design policy for extended / multiple re-use
- Design product that can be repaired
- Design recyclable products that are easily identifiable as such by customers.

1. 19.-21.January 2016:
 Join us at the Ethical Fashion Show in Berlin

24.-27. January 2016:
 Join us for #RECONOMY our Circular
 Economy Showcase & Workshops in Munich

3. **13.-16. July 2016:**Join us for OutDoor Show in Fridrichshafen

Anna Rodewald

Partner anna@greenroomvoice.com www.greenroomvoice.com

Benjamin Marias

Founder & Co-Director b.marias@air-agence.com www.air-agence.com

