

CHEMISTRY IN TEXTILE PRODUCTION: Why is it a concern & What can be done about it?

Performance Days, November 13 2012

OUR MISSION

We INSPIRE and EQUIP people to accelerate sustainable practices in the textile value chain.

WHAT WE DO

SOME OF OUR MEMBERS

AGENDA

- 1 THE IMPACTS
- 2 THE CHALLENGES
- 3 THE SOLUTIONS

1. IMPACTS

25% OF THE CHEMICALS PRODUCED WORLDWIDE ARE USED DIRECTLY OR INDIRECTLY FOR TEXTILES

Source: Greenpeace Germany

GLOBAL CHEMICAL
CONSUMPTION (PER YEAR)
APPROX. 1 MILLION TONS DYES
AND 7 MILLION TONS CHEMICALS

Source: Huntsman

AMOUNT OF CHEMICALS NEEDED...

Chemicals give our fabrics colour and performance, quality and durability

Synthetics

110 - 820 g

Cotton

350 - 1500 g

Source: Bluesign

WHY SO MANY CHEMICALS?

- Chemicals help increase yields and production outputs
- Chemicals give our fabrics colour and performance
- Chemicals increase product quality and durability
- Chemicals make products easy to care for

WHY IS IT A CONCERN?

Pollution

- Air emissions
- Water emissions
- Land contamination
- Waste management

Biggest polluting facilities in Jiangsu Province

Source: NRDC and Greenpeace

WHY IS IT A CONCERN?

WHY IS IT A CONCERN?

Safety

- Workers
- Community
- Consumers

Inefficiencies

- Water
- Energy

Reliance on fossil fuel

CHEMICALS ARE NOT GENERALLY "BAD"

- Chemicals are not "bad", it is the way they are handled that can be harmful
- The uncontrolled use of a "safe" chemical can be more harmful than a controlled process with a "critical" substance
- Not all of chemicals are properly tested for human and eco toxicity
- Many chemicals are not used in isolation but in a recipes; if toxicity is know it is in isolated use but not in a mix
- Chemicals require intelligent processes to minimize emissions

THE TEXTILE SUPPLY CHAIN

THE TEXTILE SUPPLY CHAIN

2. CHALLENGES

KNOWLEDGE

TRACEABILITY

RESISTANCE

LACK OF CLEAR DEMAND

3. SOLUTIONS

THE BEST STRATEGY TO AVOID IMPACTS, IS TO AVOID THE USE...

... IS IT REALISTIC IN ALL CASES?

CHOOSING PARTNERS WITH CARE

CHEMICALS MANAGEMENT

CLEANER PRODUCTION

ENVIRONMENTAL CERTIFICATION

BLUESIGN

- Comprehensive standard built around 5 principles
 - Resource productivity / efficiency
 - Consumer safety
 - Air emissions
 - Water emissions
 - Occupational health and safety
- The standard examines the complete environmental performance of a factory through a screening process
- Improvement measures are identified and managed in all relevant areas
- Harmful substances are eliminated before production begins
- The bluesign® standard only certify products and product ranges, but not companies

COLLABORATIVE INITIATIVES

RØADMAP TO ZERO DISCHARGE OF HAZARDOUS CHEMICALS

Chemicals
Management
Working Group

TECHNOLOGICAL ADVANCEMENTS

Pre- treatments

Enzymes

Dyeing

- Innovative dyeing technologies
- Solution dyed synthetics
- CO₂ dyeing

Finishing

- Laser finishing techniques
- Enzyme treatments
- Plasma technologies

DYEING

AVITERATM SE AND ERIOPON[®] LT

Next generation of reactive dyes

7 h

BAT today

5.5 h

AVITERA™ SE

15-20 L

For 1 kg of cotton

- 50% water saving
- 50% process time saving
- 70% less energy

4h

Source: Huntsman

CO₂ Dyeing

- Using supercritical fluid CO₂ for dyeing textiles instead of water
- Available for Polyester today, Nylon in 2012, and Cotton in development
- Using pure disperse dyes: surfactants and auxiliary chemicals are eliminated
- Dye utilization is very high with very little residue dye
- Unused dyes can be recaptured. After one batch (150kg) only 400mL of chemical waste (oil/water/dye) is generated
- Dye reuse options are being explored

Source: Dyecoo

FINISHING

PLASMA TECHNOLOGY

- Surface modification of different kinds of fibres to provide intrinsic effects on textiles
- Possibility of using one system for modification of different kinds of fibres (natural or synthetic) and textile constructions
- Appropriate choice of gas (O₂, N₂, H₂, air, Ar, He, NH₃, hydrocarbons, fluorocarbons) and control of plasma operating conditions (treatment time, power, pressure, gas flow rate) provide intrinsic effects on textiles
- Plasma processing is a dry treatment, it is a very energy efficient, and uses very low quantities of chemical compounds
- Because the desired material behavior is achieved by modifying only the surface of fibers, bulk characteristics of the material, such as its mechanical strength, are unchanged
- Plasma treatment allows achieving surface characteristics that are beyond the reach of traditional wet chemistry finishing

SUMMARY: PROCESSING STRATEGIES

- 1- Chemical Management
 - Managing inputs
- 2- Cleaner Production
 - Optimizing production
- 3- Environmental Certification
 - → 3rd party certification
- 4- Innovative Technology
 - Pushing boundaries

CONCLUDING THOUGHTS

- Controlling the inputs by selecting appropriate chemicals and managing the processes using proper process controls is fundamental to minimise toxics and their emission in the supply chain
- Options are commercially available
- It is important to choose your partners with care
- Know your supply chain and ensure your suppliers work responsibly and with responsible suppliers/partners
- Ensure environmental considerations are part of both product creation and sourcing considerations
- Create ideas and solutions collectively rather than in isolation

Charline Ducas

Textile Sustainability Specialist charline@textileexchange.org

www.TextileExchange.org

